# A tibble: 1,155 × 13
movie_name relea…¹ direc…² age_d…³ coupl…⁴ actor…⁵ actor…⁶ chara…⁷ chara…⁸
<chr> <dbl> <chr> <dbl> <dbl> <chr> <chr> <chr> <chr>
1 Harold and M… 1971 Hal As… 52 1 Ruth G… Bud Co… woman man
2 Venus 2006 Roger … 50 1 Peter … Jodie … man woman
3 The Quiet Am… 2002 Philli… 49 1 Michae… Do Thi… man woman
4 The Big Lebo… 1998 Joel C… 45 1 David … Tara R… man woman
5 Beginners 2010 Mike M… 43 1 Christ… Goran … man man
6 Poison Ivy 1992 Katt S… 42 1 Tom Sk… Drew B… man woman
7 Whatever Wor… 2009 Woody … 40 1 Larry … Evan R… man woman
8 Entrapment 1999 Jon Am… 39 1 Sean C… Cather… man woman
9 Husbands and… 1992 Woody … 38 1 Woody … Juliet… man woman
10 Magnolia 1999 Paul T… 38 1 Jason … Julian… man woman
# … with 1,145 more rows, 4 more variables: actor_1_birthdate <date>,
# actor_2_birthdate <date>, actor_1_age <dbl>, actor_2_age <dbl>, and
# abbreviated variable names ¹release_year, ²director, ³age_difference,
# ⁴couple_number, ⁵actor_1_name, ⁶actor_2_name, ⁷character_1_gender,
# ⁸character_2_gender
Rows: 1,155
Columns: 13
$ movie_name <chr> "Harold and Maude", "Venus", "The Quiet American", …
$ release_year <dbl> 1971, 2006, 2002, 1998, 2010, 1992, 2009, 1999, 199…
$ director <chr> "Hal Ashby", "Roger Michell", "Phillip Noyce", "Joe…
$ age_difference <dbl> 52, 50, 49, 45, 43, 42, 40, 39, 38, 38, 36, 36, 35,…
$ couple_number <dbl> 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, …
$ actor_1_name <chr> "Ruth Gordon", "Peter O'Toole", "Michael Caine", "D…
$ actor_2_name <chr> "Bud Cort", "Jodie Whittaker", "Do Thi Hai Yen", "T…
$ character_1_gender <chr> "woman", "man", "man", "man", "man", "man", "man", …
$ character_2_gender <chr> "man", "woman", "woman", "woman", "man", "woman", "…
$ actor_1_birthdate <date> 1896-10-30, 1932-08-02, 1933-03-14, 1930-09-17, 19…
$ actor_2_birthdate <date> 1948-03-29, 1982-06-03, 1982-10-01, 1975-11-08, 19…
$ actor_1_age <dbl> 75, 74, 69, 68, 81, 59, 62, 69, 57, 77, 59, 56, 65,…
$ actor_2_age <dbl> 23, 24, 20, 23, 38, 17, 22, 30, 19, 39, 23, 20, 30,…